
UTAH Tutorial Documentation
Release 0.1

UTAH development team

July 18, 2016

Contents

1 PART I: Basic usage 3
1.1 Installation . 3
1.2 Writing tests . 3
1.3 Executing tests . 5
1.4 Including/excluding test cases . 6
1.5 Build/setup/cleanup . 9
1.6 Timeout . 14

2 PART II 17

3 PART III 19

4 PART IV 21

5 Indices and tables 23

i

ii

UTAH Tutorial Documentation, Release 0.1

Contents:

Contents 1

UTAH Tutorial Documentation, Release 0.1

2 Contents

CHAPTER 1

PART I: Basic usage

1.1 Installation

To install the latest stable version of the utah client, let’s add the UTAH stable PPA to our sources, and install the
utah-client package:

$ sudo add-apt-repository -y ppa:utah/stable
$ sudo apt-get update
$ sudo atp-get install utah-client

The binary used to run the test cases is utah. We can take a look at all the available arguments using the -h/--help
option:

$ utah -h

Note: utah is installed as part of the utah-client package.

In this example, we’re interested just in the -r/--runlist argument which is used to tell the client which test suites
should executed in a single run.

1.2 Writing tests

1.2.1 Test suite

To create a test suite and a test case from scratch, we’ll use the phoenix command installed as part of the
utah-client package:

$ cd /tmp
$ phoenix utah_howto test_one

This will create a new test suite under a directory called utah_howto with some files in it:

• master.run: main run list expected to be passed to utah in the -r/--runlist argument. As explained
above, it contains a list of all the test suites to be executed in a single run.

Note: In the general case, the run list will be in a different location, not in the same directory as the test suite.

3

UTAH Tutorial Documentation, Release 0.1

• tslist.run: test suite list with a description of the test cases to be executed.

Note: Test cases created by phoenix will be automatically added to the test suite list. In particular, note that
test_one is already in the file.

• ts_control: test suite metadata file with additional information needed to set the environment to execute the
test suite properly.

• test_one/tc_control: test case metdata file with specific information needed to run a particular test case.

Note: All the files above use yaml syntax, take advantage of the syntax highlighting feature of your preferred editor.

1.2.2 Test case

Let’s edit test_one/tc_control to write a simple test case that verifies that /bin/true works as expected.
The final result should be as follows:

description: System sanity check
dependencies: coreutils
action: |
1. Run /bin/true

expected_results: |
1. /bin/true exits with status 0

type: userland
timeout: 60
command: /bin/true
run_as: utah

where:

• command: is what will be executed to run the test case

Note: the return code from the command is used by utah to determine whether the test case passed
or not using the unix convention.

• run_as: is the user that will executed the command

Note: dependencies, action and expected_results are there for description purposes only. The utah
client doesn’t parse/use them for now, but that might change in the future.

1.2.3 Run list

Once we have a test suite and a test case, we need to edit the run list to be able to execute them:

testsuites:

- name: utah_howto
fetch_method: dev
fetch_location: /tmp/utah_howto

where:

4 Chapter 1. PART I: Basic usage

UTAH Tutorial Documentation, Release 0.1

• fetch_method: tells the utah client how to get the test suite

• fetch_location: tells the utah client where to get the test suite from

Note: By default all test cases in the test suite are executed

1.3 Executing tests

Once the test suite and cases have been writen and the run list is ready, the utah client can be used to run the test cases
as follows:

$ sudo utah -r master.run > report.yaml
$ vim report.yaml

Note: utah must be executed as root for now to make it possible to execute commands as a different user easily.
In the future this might be improved to avoid the this.

The contents of the test execution report should be similar to the one below:

1 ---
2 arch: amd64
3 build_number: '20121017.5'
4 commands:
5 - cmd_type: testsuite_fetch
6 command: cp -r /tmp/utah_howto utah_howto
7 returncode: 0
8 start_time: '2012-11-08 14:08:21.972824'
9 stderr: ''

10 stdout: ''
11 time_delta: '0:00:00.003381'
12 user: root
13 - cmd_type: testsuite_fetch
14 command: echo 'DEVELOPMENT'
15 returncode: 0
16 start_time: '2012-11-08 14:08:21.976431'
17 stderr: ''
18 stdout: |-
19 DEVELOPMENT
20 time_delta: '0:00:00.001907'
21 user: root
22 - cmd_type: testcase_test
23 command: /bin/true
24 extra_info:
25 action: |-
26 1. Run /bin/true
27 dependencies: coreutils
28 description: System sanity check
29 expected_results: |-
30 1. /bin/true exits with status 0
31 returncode: 0
32 start_time: '2012-11-08 14:08:22.004614'
33 stderr: ''
34 stdout: ''
35 testcase: test_one

1.3. Executing tests 5

UTAH Tutorial Documentation, Release 0.1

36 testsuite: /var/lib/utah/testsuites/utah_howto
37 time_delta: '0:00:00.029548'
38 user: utah
39 errors: 0
40 failures: 0
41 fetch_errors: 0
42 install_type: desktop
43 media-info: Ubuntu 12.10 "Quantal Quetzal" - Release amd64 (20121017.5)
44 name: unnamed
45 passes: 1
46 ran_at: '2012-11-08 14:08:21.972824'
47 release: quantal
48 runlist: /tmp/utah_howto/master.run
49 uname:
50 - Linux
51 - xps8300
52 - 3.5.0-18-generic
53 - '#29-Ubuntu SMP Fri Oct 19 10:26:51 UTC 2012'
54 - x86_64
55 - x86_64

The more important things to note for now are:

• lines 5-6: the test suite is fetched from its location.

• lines 22-23: the test case is executed

• line 45: the test case passed successfully

1.4 Including/excluding test cases

Let’s continue the example by adding a new test case to the test suite we’ve already created:

$ phoenix . test_two

Note: phoenix will add test_two to tslist.run automatically

After that, let’s edit test_two/tc_control and set the following contents:

description: Test FAIL protocol
dependencies: wget
action: |
1. Use fail protocol to retrieve example.com

expected_results: |
1. example.com retrieved

type: userland
timeout: 60
command: wget fail://example.com
run_as: utah

As it can be seen, the call to wget will fail because the protocol in the URL is invalid.

Warning: there’s a bug and utah that will cause problems when trying this example depending on the locale
configuration.

6 Chapter 1. PART I: Basic usage

UTAH Tutorial Documentation, Release 0.1

When we’re done editing the test case metadata, the utah client can be executed again:

$ sudo utah -r master.run > report.yaml
$ vim report.yaml

Looking at the test execution report, the part about the new test case command is as follows:

1 ---
2 arch: amd64
3 build_number: '20121017.5'
4 commands:
5 - cmd_type: testsuite_fetch
6 command: cp -r /tmp/utah_howto utah_howto
7 returncode: 0
8 start_time: '2012-11-08 15:02:46.993684'
9 stderr: ''

10 stdout: ''
11 time_delta: '0:00:00.003440'
12 user: root
13 - cmd_type: testsuite_fetch
14 command: echo 'DEVELOPMENT'
15 returncode: 0
16 start_time: '2012-11-08 15:02:46.997347'
17 stderr: ''
18 stdout: |-
19 DEVELOPMENT
20 time_delta: '0:00:00.001918'
21 user: root
22 - cmd_type: testcase_test
23 command: /bin/true
24 extra_info:
25 action: |-
26 1. Run /bin/true
27 dependencies: coreutils
28 description: System sanity check
29 expected_results: |-
30 1. /bin/true exits with status 0
31 returncode: 0
32 start_time: '2012-11-08 15:02:47.024652'
33 stderr: ''
34 stdout: ''
35 testcase: test_one
36 testsuite: /var/lib/utah/testsuites/utah_howto
37 time_delta: '0:00:00.010179'
38 user: utah
39 - cmd_type: testcase_test
40 command: wget fail://example.com
41 extra_info:
42 action: |-
43 1. Use fail protocol to retrieve example.com
44 dependencies: wget
45 description: Test FAIL protocol
46 expected_results: |-
47 1. example.com retrieved
48 returncode: 1
49 start_time: '2012-11-08 15:02:47.064155'
50 stderr: |-
51 fail://example.com: Unsupported scheme `fail'.
52 stdout: ''

1.4. Including/excluding test cases 7

UTAH Tutorial Documentation, Release 0.1

53 testcase: test_two
54 testsuite: /var/lib/utah/testsuites/utah_howto
55 time_delta: '0:00:00.049322'
56 user: utah
57 errors: 0
58 failures: 1
59 fetch_errors: 0
60 install_type: desktop
61 media-info: Ubuntu 12.10 "Quantal Quetzal" - Release amd64 (20121017.5)
62 name: unnamed
63 passes: 1
64 ran_at: '2012-11-08 15:02:46.993684'
65 release: quantal
66 runlist: /tmp/utah_howto/master.run
67 uname:
68 - Linux
69 - xps8300
70 - 3.5.0-18-generic
71 - '#29-Ubuntu SMP Fri Oct 19 10:26:51 UTC 2012'
72 - x86_64
73 - x86_64

where it can be seen that:

• line 48: the test case command failed

• lines 50-51: the problem was indeed using an invalid protocol in the url

• line 58: the command failure was considered a test case failure

Let’s say that we know the test case has a problem, but we don’t have time to fix it now. Instead, what we want to do
is skip it until it’s fixed in the future.

To do that, edit master.run and specify that test_two must be excluded:

testsuites:

- name: utah_howto
fetch_method: dev
fetch_location: /tmp/utah_howto
exclude_tests:
- test_two

After this change, if the utah client is executed again:

$ sudo utah -r master.run > report.yaml
$ vim report.yaml

The report only shows a test case executed and no errors:

1 ---
2 arch: amd64
3 build_number: '20121017.5'
4 commands:
5 - cmd_type: testsuite_fetch
6 command: cp -r /tmp/utah_howto utah_howto
7 returncode: 0
8 start_time: '2012-11-08 15:34:58.501273'
9 stderr: ''

10 stdout: ''
11 time_delta: '0:00:00.003482'

8 Chapter 1. PART I: Basic usage

UTAH Tutorial Documentation, Release 0.1

12 user: root
13 - cmd_type: testsuite_fetch
14 command: echo 'DEVELOPMENT'
15 returncode: 0
16 start_time: '2012-11-08 15:34:58.504980'
17 stderr: ''
18 stdout: |-
19 DEVELOPMENT
20 time_delta: '0:00:00.001902'
21 user: root
22 - cmd_type: testcase_test
23 command: /bin/true
24 extra_info:
25 action: |-
26 1. Run /bin/true
27 dependencies: coreutils
28 description: System sanity check
29 expected_results: |-
30 1. /bin/true exits with status 0
31 returncode: 0
32 start_time: '2012-11-08 15:34:58.526534'
33 stderr: ''
34 stdout: ''
35 testcase: test_one
36 testsuite: /var/lib/utah/testsuites/utah_howto
37 time_delta: '0:00:00.010364'
38 user: utah
39 errors: 0
40 failures: 0
41 fetch_errors: 0
42 install_type: desktop
43 media-info: Ubuntu 12.10 "Quantal Quetzal" - Release amd64 (20121017.5)
44 name: unnamed
45 passes: 1
46 ran_at: '2012-11-08 15:34:58.501273'
47 release: quantal
48 runlist: /tmp/utah_howto/master.run
49 uname:
50 - Linux
51 - xps8300
52 - 3.5.0-18-generic
53 - '#29-Ubuntu SMP Fri Oct 19 10:26:51 UTC 2012'
54 - x86_64
55 - x86_64

1.5 Build/setup/cleanup

Sometimes, it might happen that a test case is written in a compiled language or that it requires a special configuration
to be in place before it’s executed. To handle those test cases, there’s a special metadata that can be added to the test
case.

Let’s create another test case in our test suite:

$ phoenix . test_three

To simulate a test case that requires a build step, let’s write a Makefile under the test_three directory that

1.5. Build/setup/cleanup 9

UTAH Tutorial Documentation, Release 0.1

generates the a script we want to execute later in the test case:

test_three.sh:
echo 'test -f /tmp/foo' > test_three.sh
chmod +x test_three.sh

After that, let’s edit test_three/tc_control to make sure that the make command is used in a build step before
running the test case:

description: Test that /tmp/foo exists
dependencies: make
action: |

1. Test that /tmp/foo exists
expected_results: |

1. /tmp/foo indeed exists
type: userland
timeout: 60
command: ./test_three.sh
run_as: utah
build_cmd: make

At this point, we can run the utah client:

$ sudo utah -r master.run > report.yaml
$ vim report.yaml

and check the test execution report:

1 ---
2 arch: amd64
3 build_number: '20121017.5'
4 commands:
5 - cmd_type: testsuite_fetch
6 command: cp -r /tmp/utah_howto utah_howto
7 returncode: 0
8 start_time: '2012-11-08 16:23:18.733182'
9 stderr: ''

10 stdout: ''
11 time_delta: '0:00:00.003528'
12 user: root
13 - cmd_type: testsuite_fetch
14 command: echo 'DEVELOPMENT'
15 returncode: 0
16 start_time: '2012-11-08 16:23:18.736933'
17 stderr: ''
18 stdout: |-
19 DEVELOPMENT
20 time_delta: '0:00:00.001879'
21 user: root
22 - cmd_type: testcase_test
23 command: /bin/true
24 extra_info:
25 action: |-
26 1. Run /bin/true
27 dependencies: coreutils
28 description: System sanity check
29 expected_results: |-
30 1. /bin/true exits with status 0
31 returncode: 0
32 start_time: '2012-11-08 16:23:18.765374'

10 Chapter 1. PART I: Basic usage

UTAH Tutorial Documentation, Release 0.1

33 stderr: ''
34 stdout: ''
35 testcase: test_one
36 testsuite: /var/lib/utah/testsuites/utah_howto
37 time_delta: '0:00:00.010362'
38 user: utah
39 - cmd_type: testcase_build
40 command: make
41 returncode: 0
42 start_time: '2012-11-08 16:23:18.796690'
43 stderr: ''
44 stdout: |-
45 echo 'test -f /tmp/foo' > test_three.sh
46 chmod +x test_three.sh
47 testcase: test_three
48 testsuite: /var/lib/utah/testsuites/utah_howto
49 time_delta: '0:00:00.005390'
50 user: root
51 - cmd_type: testcase_test
52 command: ./test_three.sh
53 extra_info:
54 action: |-
55 1. Test that /tmp/foo exists
56 dependencies: make
57 description: Test that /tmp/foo exists
58 expected_results: |-
59 1. /tmp/foo indeed exists
60 returncode: 1
61 start_time: '2012-11-08 16:23:18.817905'
62 stderr: ''
63 stdout: ''
64 testcase: test_three
65 testsuite: /var/lib/utah/testsuites/utah_howto
66 time_delta: '0:00:00.010506'
67 user: utah
68 errors: 0
69 failures: 1
70 fetch_errors: 0
71 install_type: desktop
72 media-info: Ubuntu 12.10 "Quantal Quetzal" - Release amd64 (20121017.5)
73 name: unnamed
74 passes: 1
75 ran_at: '2012-11-08 16:23:18.733182'
76 release: quantal
77 runlist: /tmp/utah_howto/master.run
78 uname:
79 - Linux
80 - xps8300
81 - 3.5.0-18-generic
82 - '#29-Ubuntu SMP Fri Oct 19 10:26:51 UTC 2012'
83 - x86_64
84 - x86_64

What we see here is that:

• lines 39-40: there’s a new build command that generates the files needed to run the test case.

• line 60: the test case failed because the /tmp/foo doesn’t exist.

1.5. Build/setup/cleanup 11

UTAH Tutorial Documentation, Release 0.1

Hence, we managed to generate the file needed to run the test case, but failed to configure the environment properly,
that is, have the /tmp/foo file in place.

To address that issue, let’s edit again test_three/tc_control as follows:

description: Test that /tmp/foo exists
dependencies: make
action: |

1. Test that /tmp/foo exists
expected_results: |

1. /tmp/foo indeed exists
type: userland
timeout: 60
command: ./test_three.sh
run_as: utah
build_cmd: make
tc_setup: touch /tmp/foo
tc_cleanup: rm /tmp/foo

where:

• tc_setup is a command that is executed to take care of all the configuration needed for the test case to work
correctly.

• tc_cleanup is a command that is executed to undo whatever the setup command did and set the environment
as it was before executing the test case.

Now if we run agan the utah client,

$ sudo utah -r master.run > report.yaml
$ vim report.yaml

we see the following test execution report:

1 ---
2 arch: amd64
3 build_number: '20121017.5'
4 commands:
5 - cmd_type: testsuite_fetch
6 command: cp -r /tmp/utah_howto utah_howto
7 returncode: 0
8 start_time: '2012-11-08 16:37:12.817425'
9 stderr: ''

10 stdout: ''
11 time_delta: '0:00:00.003487'
12 user: root
13 - cmd_type: testsuite_fetch
14 command: echo 'DEVELOPMENT'
15 returncode: 0
16 start_time: '2012-11-08 16:37:12.821134'
17 stderr: ''
18 stdout: |-
19 DEVELOPMENT
20 time_delta: '0:00:00.001893'
21 user: root
22 - cmd_type: testcase_test
23 command: /bin/true
24 extra_info:
25 action: |-
26 1. Run /bin/true
27 dependencies: coreutils

12 Chapter 1. PART I: Basic usage

UTAH Tutorial Documentation, Release 0.1

28 description: System sanity check
29 expected_results: |-
30 1. /bin/true exits with status 0
31 returncode: 0
32 start_time: '2012-11-08 16:37:12.849988'
33 stderr: ''
34 stdout: ''
35 testcase: test_one
36 testsuite: /var/lib/utah/testsuites/utah_howto
37 time_delta: '0:00:00.010241'
38 user: utah
39 - cmd_type: testcase_build
40 command: make
41 returncode: 0
42 start_time: '2012-11-08 16:37:12.874301'
43 stderr: ''
44 stdout: |-
45 echo 'test -f /tmp/foo' > test_three.sh
46 chmod +x test_three.sh
47 testcase: test_three
48 testsuite: /var/lib/utah/testsuites/utah_howto
49 time_delta: '0:00:00.005345'
50 user: root
51 - cmd_type: testcase_setup
52 command: touch /tmp/foo
53 returncode: 0
54 start_time: '2012-11-08 16:37:12.889391'
55 stderr: ''
56 stdout: ''
57 testcase: test_three
58 testsuite: /var/lib/utah/testsuites/utah_howto
59 time_delta: '0:00:00.002992'
60 user: root
61 - cmd_type: testcase_test
62 command: ./test_three.sh
63 extra_info:
64 action: |-
65 1. Test that /tmp/foo exists
66 dependencies: make
67 description: Test that /tmp/foo exists
68 expected_results: |-
69 1. /tmp/foo indeed exists
70 returncode: 0
71 start_time: '2012-11-08 16:37:12.900769'
72 stderr: ''
73 stdout: ''
74 testcase: test_three
75 testsuite: /var/lib/utah/testsuites/utah_howto
76 time_delta: '0:00:00.010171'
77 user: utah
78 - cmd_type: testcase_cleanup
79 command: rm /tmp/foo
80 returncode: 0
81 start_time: '2012-11-08 16:37:12.919748'
82 stderr: ''
83 stdout: ''
84 testcase: test_three
85 testsuite: /var/lib/utah/testsuites/utah_howto

1.5. Build/setup/cleanup 13

UTAH Tutorial Documentation, Release 0.1

86 time_delta: '0:00:00.002942'
87 user: root
88 errors: 0
89 failures: 0
90 fetch_errors: 0
91 install_type: desktop
92 media-info: Ubuntu 12.10 "Quantal Quetzal" - Release amd64 (20121017.5)
93 name: unnamed
94 passes: 2
95 ran_at: '2012-11-08 16:37:12.817425'
96 release: quantal
97 runlist: /tmp/utah_howto/master.run
98 uname:
99 - Linux

100 - xps8300
101 - 3.5.0-18-generic
102 - '#29-Ubuntu SMP Fri Oct 19 10:26:51 UTC 2012'
103 - x86_64
104 - x86_64

where:

• lines 51-52: there’s a new setup step before executing the test case.

• lines 78-79: there’s a new cleanup step after execution the test case.

• line 94: all test cases now pass.

Todo

Move the setup/cleanup code to the test suite to give an example about how to do the same thing at the suite level
(useful when multiple test cases need the same configuration).

1.6 Timeout

Todo

Fix the formatting and provide more information about the example.

$ phoenix . test_four

Edit tc_control file:

description: Sleep test
despendencies: sleep
action: |
1. Sleep for 10 seconds
expected_results: |
system waits and returns 0

command: sleep 10
timeout: 5

- Run again
There's one failure because of the timeout

14 Chapter 1. PART I: Basic usage

UTAH Tutorial Documentation, Release 0.1

Note: Timeout returncode is -9 (process is killed). This is documented, but the yaml output file might explain this
better in the future.

Different architectures? Override the timeout value in the master.run, so that the timeout value adjust to the target
hardware.

• Edit master.run:

timeout: 15

(top level setting, not per test suite)

• Run again

Now we have three passes

1.6. Timeout 15

UTAH Tutorial Documentation, Release 0.1

16 Chapter 1. PART I: Basic usage

CHAPTER 2

PART II

1. Different architectures $ phoenix . test32 - Edit test32/tc_control description: Test for 32 bit systems dependencies:
32 bit system actions: |

1. Get hardware platform from uname

expected_results: | 1. Hardware platform is i386 or i686 type: userland timeout: 60 command: uname -i | grep -qE
“i(3|6)86” run_as: utah

$ phoenix . test64 - Edit test64/tc_control description: Test for 64 bit systems dependencies: 64 bit system actions: |

1. Get hardware platform from uname

expected_results: | 1. Hardware platform is x86_64 type: userland timeout: 60 command: uname -i | grep -q
“x86_64” run_as: utah

• Run

$ sudo utah -r master.run > output.yaml; view output.yaml - Look at the output test32 failed test64 passed (assuming
you’ve got a 64 bits system) - Create a new master.run list for 32/64bits $ cp master.run utah32.run Edit file: -
exclude_tests:

test64

$ cp master.run utah64.run - exclude_tests:

test32

Note: Right now utah isn’t able to exclude automatically the tests. That could probaly be supported in the future using
the dependencies field. 2. Version control $ bzr init $ bzr push lp:~<lp_username>/+junk/utah_howto - Create new
runlist cp master.run launchpad.run - Edit: fetch_method: bzr fetch_location: lp:~<lp_username>/+junk/utah_howto
- Run $ sudo utah -r launchpad.run > output.yaml; view output.yaml Note: This failed because “bzr
branch” is executed as root. I should be possible to execute “bzr branch” as my user. - Use this url:
https://code.launchpad.net/~<lp_username>/+junk/utah_howto Note: In a test machine in the lab, nobody wants to
put his own ssh keys. - Look at the output It’s the same as when running locally except for the fetch command. 3.
Provisioning Note: Hardware virtualization recommended. With qemu will work as well, but it will be very slow
(and timeouts will need to be overriden on some test cases). - Install the server $ sudo apt-get install utah - Ex-
plain what the server does $ run_utah_tests.py -h This cover virtual, physical, arm boards, etc. What we need for
this example: - runlist: A positional argument $ run_utah_tests.py $HOME/launchpad.run Note: This will down-
load the ISO (precise i386 desktop) $ run_utah_tests.py $HOME/launchpad.run -s quantal -a amd64 -t server Note:
This will download the ISO (quantal server amd64) $ run_utah_tests.py $HOME/launchpad.run -i <path_to_iso>
Note: <path_to_iso> can be a local path or an http url as well. $ run_utah_tests.py $HOME/launchpad.run -i
http://archvie.ubuntu.com/ubuntu/dists/quantal/main/installer/images/netboot/mini.iso Download image - Unpack ker-
nel, initrd - Create preseed - Create vm (around 30 minutes) Note: For now the VM is always created from an ISO.
In the future, support for existing VMs might be provided. Note: Additional configuration for the VM XML can be
passed to prevent VM disk caching (which might invalidate some disk tests). 4. Reboot tests Note: No to be used in

17

https://code.launchpad.net
http://archvie.ubuntu.com/ubuntu/dists/quantal/main/installer/images/netboot/mini.iso

UTAH Tutorial Documentation, Release 0.1

your own laptop, but in a vm or in another device to be tested. $ phoenix . reboot_test - Edit tc_control file description:
Create a file in /tmp dependencies: none action: |

1. Create /tmp/utah

2. Reboot if successful

expected_results: |

1. File is created

2. system reboots type userland timeout: 60 command: touch /tmp/utah run_as: utah reboot: pass # (always,
never)

• Create another test case to be executed after the reboot

$ phoenix . post_reboot_test - Edit tc_control file description: Check that a reboot cleans up files in /tmp dependencies:
reboot_test action: |

1. Check for /tmp/utah after reboot expected_results

1. /tmp/utah does not exist

type: userland timeout: 60 command: ls /tmp/utah run_as: utah Note: tslist.run defines the ordering for test cases.
User is expected to put the test cases in the right order so that the ones after the reboot are executed when they should.
Note: master.run is supposed in a different location Note: provisioners - libvirt - cobbler - panda board (in the lab)

Note: Passing parameters to the test cases: - Option 1: Use an environment variable - Option 2: Generate a data file
on the fly and read from it in the setup

18 Chapter 2. PART II

CHAPTER 3

PART III

How to write good test cases: <link> - Let’s work on an example: $ bzr branch lp:~utah/utah/utah_ls_example - Look
at the ts_control file There are both a setup and a cleanup command - Look at ts_util.py sys.path used to import from
common module - Look at the common module

• STATE_FILE, DATA_FILE defined in terms of the module’s directory

• run_cmd used as a method to run a command and get stdout, stderr and returncode.

• setup_logging

• get_testfiles_data: Used to get the data used by the test cases

• Look at data.json: contains filenames and permissions (both in octal number and as string)

• Look again at ts_util.py - setup: create directory and files according to the information in the data file

Note: The creation of a tmp directory is something that will be commonly needed and worth having in a library. -
Look at permissions/tc_control action and expected results describe what the test does. - Look at permissions.py

• sys.path used to import from common

• Using unittest module

• Look at runTest method

• Directory and files exist

• Permission string for every file is also correct

• Look at dotfiles/tc_control

action and expected results describe what the test does. - Look at dotfiles.py

• Directory exists

• Dot files are there

Note: We’re not using the unittest runner on purpose. Note: Quite a lot of discussion of whether unittest only for the
assertions should be a good practice because it’s confusing. Question: Do you have a skeleton file to encourage users
to follow best practice? - Edit master.run - Run Two test case passes Feature request: sudo utah -r . (Run test suite and
cases without any master.run file)

19

UTAH Tutorial Documentation, Release 0.1

20 Chapter 3. PART III

CHAPTER 4

PART IV

Discussion about writing test cases for UTAH

21

UTAH Tutorial Documentation, Release 0.1

22 Chapter 4. PART IV

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

23

	PART I: Basic usage
	Installation
	Writing tests
	Executing tests
	Including/excluding test cases
	Build/setup/cleanup
	Timeout

	PART II
	PART III
	PART IV
	Indices and tables

